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SLATER SUM AND KINETIC ENERGY TENSOR 
IN SOME SIMPLE INHOMOGENEOUS 

ELECTRON LIQUIDS 

C. AMOVILLI“ and N. H. MARCHh 

“Dipartiinento di  Chimica e Chimica Industriule, Universitu di Pisu, 
Via Risorgimento 35, 561 26 Pisa, Ita1.y. 

’Inorganic Chemistrj) Depurtment, Univer.sity of O.xfiird, 
South Parks Roud, Oxfiwd O X 1  3QR, England 

(Rewicrt l  22 Frhrutrrj 1995) 

Starting from the Bloch equation for the canonical density matrix, the differential equation satisfied by 
the Slater sum is derived for some simple inhomogeneous electron liquids. The relation of this derivation 
to the differential form of the virial theorem, and in particular to the kinetic energy tensor, is finally 
discussed. 

K E Y  WORDS: Bloch equation. slater sum, kinetic energy tensor. 

1. INTRODUCTION 

Since the work of March and Murray’, specifically for central field problems, it has 
been known that the Bloch equation for the canonical density matrix contains within 
itself a differential equation for the Slater sum P (r, 8). Here, for independent electrons 
moving in a common potential energy V(r), P ( r , p )  is defined in terms of the one- 
electron eigenvalues ci and the corresponding one-electron wave functions t,bi (r) by 

P(r,/j)= 1 $ l ( r ) $ ~ ( r ) e - ” ‘ ~  : /I= l /k,T (1.1) 
ail1 

where k,T is the thermal energy. The canonical density matrix C(r , , r2 ,P)  is the 
direct generalization of eqn ( 1  . l )  to the off-diagonal form 

If H denotes the independent Hamiltonian o f  the inhomogeneous electron liquid 
defined by the application of the one-body potential energy V(r):  

I 
H ( r ) = - ? ~ : + l / ( r )  ( 1  3) - 

then one will takc us starling point the appropriate Bloch equations (see eqns (2.1) 
and (2.2) below). The ditrerential equation for P(r, /I) for some simple cases will then 
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136 C. AMOVlLLl AND N .  H .  MARCH 

be derived by direct expansion of the canonical density matrix about its diagonal. 
After this development, the connection with the differential form of the virial 
theorem2, and in particular with the kinetic energy tensor, will be considered in 
section 3. Section 4 constitutes a brief summary, with some proposals for future work. 

2. DIFFERENTIAL EQUATION FOR SLATER SUM P(r,  P) IN SOME 
SIMPLE CASES 

The starting point of the present derivation will be the two forms of the Bloch 
equation for C defined in eqn(l.2): 

Introducing new independent variables as R = i ( r l  + r,) and r 1 2  = rl  - r,, summing 
and subtracting eqns (2.1) and (2.2), one finds 

and 

with 

p=- R ' r l 2  
Rr12 

Taking as the first example the case of a bare Coulomb field, i.e. V ( R )  = - Z / r ,  
Blinder's arguments3 lead to 
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SLATER S U M  FOR ELECTRON LIQUIDS 137 

while eqns (2.3) and (2.4) become, respectively, 

and 

(2.6) 

One then finds, differentiating eqn (2.6) and inserting A‘ from eqn (2.7), for the Slater 
sum P ( R ,  /I) 

(2.8) 

This equation is solved by P ( R ,  p + a )  = c - ~ ~ ~  + D z L ’ 2 .  

Using similar arguments and puting (see Sondheimer and Wilson4) 

C ( r 1 , r 2 , B ) =  P(R,B)+A(R,P)r: ,  +to(r?,) (2.9) 

for the harmonic potential in three dimensions, the differential equation for the 
Slater sum is 

1 
(2.10) 

Finally we have considered also the case of a uniform electric field of arbitrary 
strength along x-axis in three dimensions. In this case the near-diagonal form for C 
(see Harris and Cina’, Jannussis”) 

~ ( I . ~ , ~ , , / ~ ) = P ( X , / I ) + A ( X , P ) ~ : ~  + 4 r t 2 )  (2.1 1) 

leads to the following differential equation 

(2.12) 

It is evident, comparing these last two results with the corresponding one dimen- 
sional equations, that the dimensionality D gives the coefficient ( D  ~ 2)/2 to the term 
V ’ P .  In a general central field the independent variables are r 1 , r 2  and r 1 2  giving a 
greater freedom to the form (2.5) t h a t  now can be written 

C ( r 1 , r 2 , / 1 ) =  P ( R , P ) +  [A,  (R , / j )+ P ~ A , ( R , P ) I ~ : ~  + o ( r ? J  (2.13) 

and eqns (2.3) and (2.4) are probably not sufficient t o  give separate equations for 
P,  A 1  and A,. The additional condition 

C (r , . rz,  /j + /j’ 1 = C (r I , r, /j) C (r, r2, p’ )  d r s 
for /j’ small leads back to the Bloch equation and does not give further information. 
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138 C. AMOVILLI A N D  N .  H. M A R C H  

3. DIFFERENTIAL FORM O F  THE VIRIAL THEOREM 

We did some analyses of our previous results and we arrived at the conclusion that 
the differential form of the virial theorem is already included in eqns. (2.3) and (2.4). 
The function A should be also related directly to the trace of the kinetic energy 
tensor. The form (2.5) in this context can be read as 

1 
C ( r l ,  r2, B) = P ( R ,  B) + 2 r12  . T ( R ,  B )  . r l  + . . . (3.1) 

where 

(3.2) 

is, by definition, a kinetic energy tensor. This tensor must satisfy the differential form 
of the virial theorem that, for a general central field, could be expressed as a relation 
of the following type’ 

dT.. 
R i f [ V ,  P ]  = 1 rJ 

j =  d R j  ( i =  1,2,3) (3.3) 

Again, from Blinder’s arguments, in the Coulomb field the kinetic energy tensor can 
be written in terms of the trace t ,  being 

R i  R j  T . .  = t- 
‘1 R2 

and eqn (3.3) reduces to the following scalar relation 

1 f C v ;  P I = R f + f ’  

(3.4) 

(3.5) 

which can be combined with the definition of the kinetic energy density to give an 
equation for the Slater sum. In a general central field the matrix elements of T are 
not related simply to the trace. After some derivation the result was the following. 
Writing’ 

(3.6) 

where 

s (R ,B)  = C ~ b l ( R ) ~ L r ( R ) u n l ( l ,  B) (3.8) 
nl  

Now eqn(3.7) should be the most general form in central field; one has a new 
function s(R, P )  and precisely the same condition as in eqn (2.13). 
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4. SUMMARY AND FUTURE DIRECTIONS 

It has been shown, by a direct argument from the Bloch equations (2.1) and (2.2) for 
the canonical density matrix, that the differential equations (2.8) and (2.10) for the 
Coulomb field and the harmonic oscillator respectively can be simply obtained. The 
differential equation (2.8) for the Coulomb field has also been recently obtained by 
Pfalzner er al.’ and Cooper* by means of the spatial generalization of Kato’s the- 
orem’. Again, a different derivation has been given from that of Lehmann and 
March” for initially free electrons in a uniform electric field of arbitrary strength. 
The connection of the arguments of section 2 with the differential form of the virial 
theorem is set out in section 3 .  For the specific case of the Coulomb field, this is 
directly connected with a relation, eqn. (3.4), between the kinetic energy tensor (3.2) 
and the trace t ,  of central importance in density functional theory. 

We are currently working on the generalization of these arguments to treat the 
case of a hydrogen-like atom in an electric field of arbitrary strength. Directions in 
which this is being tackled are (i) semiclassical approaches (see Hill” and Blinder”) 
and (ii) fully quanta1 approaches using the separability in parabolic coordinates. 
Undoubtedly, in the Coulomb problem in zero electric field, the separability, of the 
Schrodinger wave equation in both spherical polar coordinates and also parabolic 
coordinates can be subsumed into the existence of the Runge-Lenz vector as a 
constant of motion additional to the conventional ones in central fields. Ceneraliz- 
ations are being sought presently for non-zero electric field. 

Ackiiowledyiiients 

O n e  of us (N.H.M.)  wishes to  acknowledge partial financial support  from the Office of Naval Research 
(USA) for the work reported here. 

Rrjerences 

1. N. H. March and  A. M.  Murray, Phys.  Rea., 120, 830 (1960). 
2. See for example, A. Holas  and  N. H. March, J .  Mol. Struct. (Theoc,liern) 31.5, 239 (1994). 
3. S. M.  Blinder, Phys. Rrc. ,  A43, 13 (1991). 
4. E. H .  Sondheimer and  A. H. Wilson, Proc. Roy. Soc., A210, 173 (1951). 
5. R. A. Harris and  J .  A. Cina,  J .  Chern. Phys., 79, 1381 (1983). 
6. A. D. Jannussis, Phys. Srurus Solidi 36, K I7 (1969). 
7. S. Pfalzer, H. Lehmann and N. H. March, J .  Mtrth. Cl7em.. 16, 9 (1994). 
8. 1. L. Cooper,  Phys. Ret., A50, 1040 (1994). 
9. N. H. March, Phys. Rec.. A33, 88 (1986) 

10. H. Lehmann and N. H. March. Pliys. Chern. Liquids. 27, 65 (1994). 
1 I .  R. N. Hill, J .  Math .  Phjs. ,  9, 1534 (1968). 
12. S. M.  Blinder, Phys. Rec. Letf., 52, 1771 (1984). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
1
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


